Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes Raman Scattering Microspectroscopy
نویسندگان
چکیده
The mechanism of surfactant-induced cell lysis has been studied with quantitative coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The dynamics of surfactant molecules as well as intracellular biomolecules in living Chinese Hamster Lung (CHL) cells has been examined for a low surfactant concentration (0.01 w%). By using an isotope labeled surfactant having CD bonds, surfactant uptake dynamics in living cells has been traced in detail. The simultaneous CARS imaging of the cell itself and the internalized surfactant has shown that the surfactant molecules is first accumulated inside a CHL cell followed by a sudden leak of cytosolic components such as proteins to the outside of the cell. This finding indicates that surfactant uptake occurs prior to the cell lysis, contrary to what has been believed: surface adsorption of surfactant molecules has been thought to occur first with subsequent disruption of cell membranes. Quantitative CARS microspectroscopy enables us to determine the molecular concentration of the surfactant molecules accumulated in a cell. We have also investigated the effect of a drug, nocodazole, on the surfactant uptake dynamics. As a result of the inhibition of tubulin polymerization by nocodazole, the surfactant uptake rate is significantly lowered. This fact suggests that intracellular membrane trafficking contributes to the surfactant uptake mechanism.
منابع مشابه
Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications
Coherent anti-Stokes Raman scattering (CARS) microscopy permits vibrational imaging with high-sensitivity, high speed, and three-dimensional spatial resolution. We review recent advances in CARS microscopy, including experimental design, theoretical understanding of contrast mechanisms, and applications to chemical and biological systems. We also review the development of multiplex CARS microsp...
متن کاملMultiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles
We report a theoretical description and experimental implementation of multiplex coherent anti-Stokes Raman scattering (M-CARS) microspectroscopy using a picosecond pump beam and a femtosecond Stokes beam. The effect of the chirp in the Stokes pulse on a M-CARS spectrum is studied. Polarization-sensitive detection is utilized for suppression of the nonresonant background and for selective detec...
متن کاملRaman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications.
A tutorial article is presented for the use of linear and nonlinear Raman microspectroscopies in biomedical diagnostics. Coherent anti-Stokes Raman scattering (CARS) is the most frequently applied nonlinear variant of Raman spectroscopy. The basic concepts of Raman and CARS are introduced first, and subsequent biomedical applications of Raman and CARS are described. Raman microspectroscopy is a...
متن کاملTriple-resonance coherent anti-stokes Raman scattering microspectroscopy.
Fluorescence-free microscopy: A new nonlinear optical microspectroscopy technique, femtosecond (fs) triple-resonance coherent anti-Stokes Raman scattering, in which the amplitude and phase of input fs laser pulses are optimally shaped to be in triple resonance with the molecular electronic and vibrational transitions, generates a coherent nonlinear signal beam at a new color with a highest poss...
متن کاملBroadband Coherent Anti-Stokes Raman Scattering
Broadband coherent anti-Stokes Raman scattering (BCARS) microspectroscopy is a unique label-free imaging modality that provides detailed chemical information at each pixel. In minutes, this technique captures a “hyperspectral” cube that co-registers microscopic spatial features with chemical signatures, sensitive to molecular content and structure. This technique can delve into the molecular in...
متن کامل